
UNIVAC 1219 EMULATOR

with

UNIVAC 1532 I/O CONSOLE

and

1219 ASSEMBLER

by

Duane B. Craps

3 March 2013

TABLE OF CONTENTS

1. COVER

2. TOC

3. 1219 EMULATOR OPERATION

4. UNIVAC 1219 SOFTWARE

5. 1532 INPUT-OUTPUT CONSOLE NOTES

6. 1219 ASSEMBLER NOTES

7. 1219 REPERTORY OF INSTRUCTIONS

9. 1218 REPERTORY OF INSTRUCTIONS

11. 1218 REPERTORY and 1540 Mag Tape

13 PRE ASCII CHARACTER CODES

15 ASCII CHARACTER CODES

16 SAMPLE ASSEMBLER SOURCE (BOOTSTRAP)

17 SAMPLE ASSEMBLER OBJECT LISTING

PAGE 2

 1219 EMULATOR OPERATION

Works pretty much like a real machine. Click on registers , type in octal values into registers and click
start.. Well, we were really punching in binary, but we were thhinking in octal

To manually store a program:

1. click on Function repeate button to light red

2. click on RUN button to change ledgend to "Op Step"

3. Enter first address to be stored into P register

4. put octal 44 (Store AL) in the F (Function) register

5. Put word to be stored in AL (Accumulator Lower) register

6. Click start , word will be stored , repeat steps 5& 6 until all words are in

To manually view memory contents:

1. click on Function repeate button to light red

2. click on RUN button to change ledgend to "Op Step"

3. Enter first address to be read into P register

4. put a 12 (Enter AL) in the F (Function) registerd

5. Click start , word will be viewed in AL, repeat this step fot each word

To load or store a memory Images

NOTE: Memory Image”0” is loaded at emulator start

To load a saved image:

Clicking on Load with 1 in “P” register will load a memory image (32K)as referenced by “AL” register
bits (0-2)

To Save a memory image:

Clicking on Load with 2 in “P” register will save memory image (32K) as referenced by “AL” register
bits (0-2)

PAGE 3

UNIVAC 1219 SOFTWARE

At this time there is not much software. The “memory image 0” sent with the 1219 emulator
contains the following:

1. A program residing at octal 1000 that prints out HELLO WORLD over and over until
stooped by selecting stop key 0

2. A program residing at octal 2000 that inputs a characters from the keyboard and displays
the octal code of the key pressed in register AL

3. Paper tape Bootstrap at octal 500 which unconditionally loads 147(8) at address 540 and
jumps to 540 this should be a loader program able to read address from tape and load an
object program and verify the checksum .

4. Paper tape loader at address 540

5. A keyboard inspect and change program at octal 70000with the following commands:

• I (inspect) type 6 digit address or shorter terminated by a space

• N (next) inspects next address

• L (last) goes back one address

• C (change) inputs 6 digit octal number to be stored at last address inspected

• T (terminal) inputs 6 digit terminal address

• M (mask) inputs 6 digit mask

• D (data) inputs 6 digit data word

• D (data) inputs 6 digit data word

• CTRL+D (dump) Dumps contents of memory from inital to terminal

• CTRL+S (search) Searches form initial to terminal for data subject to mask
(must match where bits are set in mask)

PAGE 4

1532 INPUT-OUTPUT CONSOLE NOTES

1. Console defaults to channel 0; No need to select Channel unless program uses
something else. Almost all 1532's were on channel 0, as it had the lowest I/O
priority.

2. Punch feature not implemented at this time

3. Put file name in File window before starting the bootstrap or loader. Failing to do
so will cause message “Mount File and select Reader”; Clear message put file
name in file window and select reader. The assembler “.76” programs load with
the loader at octal address 540.

4. I added a check box to inhibit carriage returns. Modern computer equipment use a
linefeed character to both linefeed and character return.. Legacy programs, using
both, would skip lines

PAGE 5

1219 ASSEMBLER NOTES

The assembler program started many years as an assembler I wrote on a Radio Shack Color Computer for the
AN/UYK-20 computer; which was the standard US Navy minicomputer at the time. Not having Disc I/O all all
source code / object listing had to fit in memory. Source was entered as data statements in the program. Later when
I bought my first P.C. (a Packard bell 80286 machine with 40 Mb HD) I converted it to GW basic. About the time
all the 1219's went away ,I modified it to assemble 1219 instructions. Now it is running under Q basic 64. Maybe
some day I will port it to Visual basic. The code is UGLY. To save memory, I used all one or two character variable
names, a gazillion statements per line and no comments.

To run assembler start program and enter the name of the source program , in upper case, containing your
program's source code in TRIM neumonics. Enter only name portion as assembler adds the .txt . The assembler
writes the output files in the same directory as it is run from. The output name .PRG is the assembly listing. The
name.76 is a bioctal tape image that can be loaded into the computer by putting it's name in the file window of the
1532 I/O console and starting the computer at 540 (8) . The assembler was assembled with QBASIC and
must be run in a DOS emulator on late model computers.(I use DosBox)

 CODING CONVENTIONS:

• Labels must start in column 1 and be preceded by a >
 >LABLE1 ENTAL LOK+2

• All numbers are assumed to be decimal values except:
 &100 octal 100 (decimal 64)
 &HABC hexadecimal ABC (decimal 2748)

 ASSEMBLER DIRECTIVES AND PSEUDO OPERATIONS:

• ORG Sets beginning address at which to assemble the following instructions. multiple ORG
directives are permitted.

• END Terminates assembly.

• SADD Sets Program starting address. If present assemler will produce self starting tape.

• RES Skips a number of addresses.

• DATA Enters data into the current address.

• BCW Same as DATA but lets you use BCW to make your listing easier to read.

• AS (ASCII string) Packs the message that follow into memory two ASCII characters per
address.“[“= RETURN ; “]” = LINEFEED . Bit 9 is set in last character

• AW Puts the text that follows into memory one ASCII character per memory address.“[“ =
RETURN ; “]” = LINEFEED. Bit 9 is set in last character.

• EVEN Causes the next instruction (usually data) to be assembled an even address.
The 1219 computer requires double length operands to be at even addresses
as it forces bit 0 set to retreive the most siginifant half.

• EQU Assigns the value of its operand to its label.

• ; The rest of line is taken as a remark.

• LOK Holds the value of it's address. Do not put space before offset .LOK+4 correct LOK +4 wrong

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

PAGE 12

PAGE 13

PAGE 14

PAGE 15

PAGE 16

SAMPLE ASSEMBLER SOURCE LISTING

;SAMPLE BOOTSTRAP FOR UNIVAC 1219 COMPUTER
;COMPATABLE WITH TARTAR LOADER
;PROGRAM UNCONDITIONALY LOADS 147 OCTAL WORDS (LOADER)
;ON BIOCTAL PAPER TAPE STARTING AT OCTAL ADDRESS 436
;THEN JUMPS TO OCTAL 540 (FIRST 2 WORDS ARE HEADER)
;TAPE FORMAT: 76=> BIOCTAL TAPE, IIIII =>INITIAL, TTTTT=> TERMINAL
;76 (BIOCTAL TAPE ID CODE)
;II (MSD INITIAL ADDRESS)
;II
;IT
;TT
;TT (LSD OF FINAL ADDRESS)
;PP (FIRST 6 BITS OF FIRST INSTRUCTION)
;PP
;PP (LAST 6 BITS OF FIRST INSTRUCTION)
;** REMEMBER BOOTSTRAP IGNORES HEADER DATA**
;
;
ORG &O500 ; ADDRESS TO START ASSEMBLY
>TARBOOT SIL 0
ENTSR &O10
ENTICR 1
EXF 00 ; TURN ON READER
BCW READ
BCW READ
ENTBK 0 ;SET FRAME COUNT
>NXTWD STRB 3
ENTALK 2
STRAL 4
ENTALK 0
>INPUT IN 0 ;GET FRAME
BCW 2
BCW 2
SKPIIN 0 ; WAIT FOR DATA
JP LOK-1
LSHAL 6 ; SHIFT UP 6 BITS
SLSET 2
JPALNZ LOK+3
ENTAU 3
JPAUZ INPUT
ISK 4 ;THREE FRAMES?
JP INPUT ; NO GET MORE
STRALB &O536 ;YES STORE WORD
BSK WDCT ;DONE YET?
JP NXTWD ;NO GET NEXT
JP &O540 ;yES JP TO LOADER
>WDCT DATA &O147 ;WORDS TO LOAD
>READ DATA &O151 ; CODE TO TURN ON READER
END

PAGE 17

SAMPLE ASSEMBLER OBJECT LISTING

TARTAR.PRG
;SAMPLE BOOTSTRAP FOR UNIVAC 1219 cOMPUTER
;COMPATABLE WITH TARTAR LOADER
;PROGRAM UNCONDITIONALY LOADS 147 OCTAL WORDS (LOADER)
;ON BIOCTAL PAPER TAPE STARTING AT OCTAL ADDRESS 436
;THEN JUMPS TO OCTAL 540 (FIRST 2 WORDS ARE HEADER)
;TAPE FORMAT: 76=> BIOCTAL TAPE, IIIII =>INITIAL, TTTTT=> TERMINAL
;76 (BIOCTAL TAPE ID CODE)
;II (MSD INITIAL ADDRESS)
;II
;IT
;TT
;TT (LSD OF FINAL ADDRESS)
;PP (FIRST 6 BITS OF FIRST INSTRUCTION)
;PP
;PP (LAST 6 BITS OF FIRST INSTRUCTION)
;** REMEMBER BOOTSTRAP IGNORES HEADER DATA**
;
;
 ORG &O500 ; ADDRESS TO START ASSEMBLY
TARBOOT 000500 503400 SIL 0
 000501 507310 ENTSR &O10
 000502 507201 ENTICR 1
 000503 501300 EXF 00 ; TURN ON READER
 000504 000534 BCW READ
 000505 000534 BCW READ
 000506 360000 ENTBK 0 ;SET FRAME COUNT
NXTWD 000507 420003 STRB 3
 000510 700002 ENTALK 2
 000511 440004 STRAL 4
 000512 700000 ENTALK 0
INPUT 000513 501100 IN 0 ;GET FRAME
 000514 000002 BCW 2
 000515 000002 BCW 2
 000516 502100 SKPIIN 0 ; WAIT FOR DATA
 000517 340516 JP LOK-1
 000520 504606 LSHAL 6 ; SHIFT UP 6 BITS
 000521 510002 SLSET 2
 000522 630525 JPALNZ LOK+3
 000523 100003 ENTAU 3
 000524 600513 JPAUZ INPUT
 000525 570004 ISK 4 ;THREE FRAMES?
 000526 340513 JP INPUT ; NO GET MORE
 000527 450536 STRALB &O536 ;YES STORE WORD
 000530 560533 BSK WDCT ;DONE YET?
 000531 340507 JP NXTWD ;NO GET NEXT
 000532 340540 JP &O540 ;yES JP TO LOADER
WDCT 000533 000147 DATA &O147 ;WORDS TO LOAD
READ 000534 000151 DATA &O151 ; CODE TO TURN ON READER

 LABEL TABLE

TARBOOT 000500
INPUT 000513
NXTWD 000507
READ 000534
WDCT 000533

PAGE 18

