January 1976 Tiny BASIC Calisthenics & Orthodontia Box 310, Menlo Park CA 94025 Page 5.

DESIGN NOTES FOR TINY BASIC

by Dennis Allison, happy Lady, & friends

(reprinted from People’s Computer Company Vol. 4, No. 2)

SOME MOTIVATIONS

A lot of people have just gotten into having
their own computer. Often they don’t know too
much about software and particularly systems
software, but would like to be able to program in
something other than machine language. The
TINY BASIC project is aimed at you if you are
one of these people. Qur goals are very limited---
to provide a minimal BASIC-like language for
writing simple programs. Later we may make
it more complicated, but now the name of the
game is keep it simple. That translates to a
limited language (no floating point, no sines
and cosines, no arrays, etc.) and even this is
a pretty difficult undertaking.

Originally we had planned to limit
ourselves to the 8080, but with a variety of
new machines appearing at very low prices, we
have decided to try to make a portable TINY
3ASIC system even at the cost of some effi-
ciency. Most of the language processor will be
written in a pseudo language which is good for
writing interpreters like TINY BASIC. This
pseudo language (which interprets TINY BASIC)
will then itself be implemented interpretively.
To implement TINY BASIC on a new machine,
one simply writes a simple interpreter for this
pseudo language and not a whole interpreter for
TINY BASIC.

We'd like this to be a participatory design
project. This sequence of design notes follows the
project which we are doing here at PCC. There may
well be errors in content and concept. If you're
making a BASIC along with us, we’d appreciate
your help and your corrections.

Incidentally, were we building a production
interpreter or compiler, we would probably struc-
ture the whole system quite differently. We chose
this scheme because it is easy for people to change
without access to specialized tools like parser
generator programs.

THE TINY BASIC LANGUAGE

There isn’t much to it. TINY BASIC
looks like BASIC but all variables are integers
There are no functions yet (we plan to add RND,
TAB, and some others later). Statement numbers
must be between 1 and 255 so we can store them
in a single byte. LIST only works on the whole
program. There is no FOR-NEXT statément. We've
tried to simplify the language to the point where it
will fit into a very small memory so impecunious.
tyros can use the system.

The boxes shown define the language. The
guide gives a quick reference to what we will include.
The formal grammar defines_ exactly what is a legal
TINY BASIC statement. The grammar is important
because our interpreter design will be based upon it.

IT'S ALL DONE WITH MIRRORS-------
OR HOW TtNY BASIC WORKS

All the variables in TINY BASIC: the
control information as to which statement is
presently being executed and how the next state-
ment is to be found, the returnaddressesof active
GOSUBS----all this information constitutes the
state of the TINY BASIC interpreter.

There are several procedures which act upon
this state. One procedure knows how to execute
any TINY BASIC statement. Given the starting
point in memory of a TINY BASIC statement, it
will execute it changing the state of the machine
as required. For example,

100 LETS = A+6 €
would change the value of S to the sum of the con-
tents of the variable A and the interger 6, and sets
the next line counter to whatever line follows 100,
if the line exists.

A second procedure really controls the
interpretation process by telling the line interpreter
what to do. When TINY BASIC is loaded, this
control routine performs some initialization, and
then attempts to read a line of information from the
console. The characters typed in are saved in a buffer,
LBUF. It first checks to see if there is a leading
line number, |f there is, it incorporates the line
into the program by first deleting the line with the
same line number (if it is present) then inserting
the new line if it is of nonzero length. If there is
no line number present, it attempts to execute
the line directly. With this strategy, all possible
commands, even LIST and CLEAR and RUN are
possible inside programs. .Suicidal' programs are
also certainly possible.

TINY BASIC GRAMMAR

. The things in bold.face stand for themselves. The names in lower case
represent classes of things. '::=’ is read ‘is defined as’. The asterisk denotes
zero or more occurances of the object to its immediate left. Parenthesis
group objects. € .is the empty set. | denotes the alternative (the
exclusive-or).

line::= number statement @ | statement @
statement::= PRINT expr-list
IF expression relop expression THEN statement
GOTO expression
INPUT var-list
LET var = expression
GOSUB expression
RETURN
CLEAR
LIST
RUN
END
expr-list::= (string | expression) (, (string | expression) *)
. var-list::= var {, var)* ,
expression::= (4| =€) term ((+| =) term)*
term::= factor ((* | /) factor)*
factor::= var | number | (expression)
var::=A |B IC ... |Y |Z
number::= digit digit*
digit::= 0/ 12 |...1819
relop::=< (>|=]€) | >(<I=1€) 1=
A BREAK from the console will interrupt execution of the program.

