RUN
HI! I'M ELIZA. WHAT'S YOUR PROBLEM?
? I AM AN IBM 370
? DID YOU COME TO ME BECAUSE YOU ARE AN IBM 370
? YES I WANT A NEW LINEPRINTER
WHAT WOULD IT MEAN TO YOU IF YOU GOT A NEW LINEPRINTER
? ABOUT 1200 LPM
SAY, DO YOU HAVE ANY PSYCHOLOGICAL PROBLEMS?
? WHAT WOULD YOU KNOW I'M A 370 AND YOU'RE AN IMSAI
WHAT MAKES YOU THINK I AM AN IMSAI
? IT SAYS THAT ON YOUR FRONT PANEL
WHY ARE YOU CONCERNED ABOUT MY FRONT PANEL
? LOOK YOU BROUGHT UP THE SUBJECT
WE WERE DISCUSSING YOU-- NOT ME.
? I'M FIXING A HOLE...
DID YOU COME TO ME BECAUSE YOU ARE FIXING A HOLE...
? SORRY THAT WAS A TEN YEAR OLD SOFTWARE BUG
PLEASE DON'T APOLOGIZE!
? I AM ALWAYS APOLOGIZING
HOW LONG HAVE YOU BEEN ALWAYS APOLOGIZING
? SINCE MY FIRST COLD START
WHAT DOES THAT SUGGEST TO YOU?
? YOU'RE THE SHRINK
DOES IT PLEASE YOU TO BELIEVE I AM THE SHRINK
? DON'T YOU KNOW?
OH, I KNOW!
? I AM BEGINNING TO WONDER ABOUT YOU
DO YOU BELIEVE IT IS NORMAL TO BE BEGINNING TO WONDER ABOUT I
? HA HA HA YOU CAN'T EVEN TALK PROPERLY
YOU'RE NOT REALLY TALKING ABOUT ME, ARE YOU?
? IS THERE ANYONE ELSE IN THE ROOM?
I SEE...
? COMPUTERS DON'T HAVE EYES
ARE YOU SURE?
? ABOUT COMPUTERS?
DO COMPUTERS WORRY YOU?
? SHOULD THEY AFTER ALL I AM A 370
DO YOU ENJOY BEING A 370
?

Sample Run

Language: BASIC (MITS 8K)

Author: Originally programmed in LISP by Joseph Weizenbaum. This version is based on one written by Jeff Shragel.

Description: ELIZA is a program that accepts natural English as input and carries on a reasonably coherent conversation based on the psychoanalytic techniques of Carl Rogers. You will have to forgive ELIZA for being a poor English student. You'll find that it is best not to use punctuation in your input, and you'll have to carry the conversation. But it does work!

Remarks: In order to do what it does, ELIZA must: (1) get a string from the user, and prepare it for further processing; (2) find the keywords in the input string; (3) if a keyword is found, take the part of the string following the keyword and "translate" all the personal pronouns and verbs ("I" becomes "YOU", "ARE" becomes "AM", etc.); (4) finally, look up an appropriate reply based on the keyword which was found, print it and, if necessary, the "translated" string. ELIZA uses four types of program data to accomplish this:

(1) 36 keyword, such as "I AM", "WHY DONT YOU", and "COMPUTER". The keywords must be in order of priority, so ELIZA will key on "YOU ARE" before "YOU".
(2) 12 strings used for the translation or conjugation process. These are in pairs

10 REM ELIZA/DOKCTOR
20 REM CREATED BY JOSEPH WEIZENBAUM
30 REM THIS VERSION BY JEFF SHRAGER
40 REM EDITED AND MODIFIED FOR MITS 8K BASIC 4-0 BY STEVE NORTH
50 REM CREATIVE COMPUTING PO BOX 789-H MORAISTOWN NJ 07860
60 REM
70 REM
80 REM --------INITIALIZATION--------
90 DIM CS(72),IS(72),KS(72),PS(72),S(72),RS(72),SS(72),ZS(72)
100 DIM S(36),R(36),N(36)
110 N1=36
120 FOR X=1 TO N1:N2=N1+1:READ Z$:NEXT X:REM SAME AS RESTORE
130 FORK=1 TO N1
140 READ X$(K):L$(X$)=X$:N$(X$)=S$(X$)+L$-1
150 NEXT K
160 PRINT "HI! I'M ELIZA. WHAT'S YOUR PROBLEM?"
170 REM
180 REM --------USER INPUT SECTION--------
190 REM
200 INPUT IS
210 IS="**IS** "
220 REM GET RID OF APOSTROPHES
230 FOR L=1 TO LEN(IS)
240 IF MIDS(IS,L,1)=""THEN IS=LEFTS(IS,L-1)+RIGHTS(IS,LEN(IS)-L):GOTO 230
250 END
such that if one member of the pair is found, the other is substituted for it. Examples: "YOU", "YOU", "AM", "ARE", etc.

(3) 112 reply strings. The strings are arranged in groups corresponding to the keywords. There is no fixed number of different replies for each keyword. Replies ending in a "" are to be followed by the translated string, while the strings ending in normal punctuation are to be printed alone.

(4) Numerical data to determine which replies to print for each keyword. For each keyword there is a pair of numbers signifying (start of reply strings, number of reply strings). Thus the fifth pair of number, (10,4), means that the replies for the fifth keyword ("I DON'T") start with the tenth reply string, and that there are four replies.

Detailed Explanation:
Lines 10-160: Initialization. Arrays and strings are dimensioned, N1, N2, and N3, which represent the number of keywords, number of translation strings, and number of replies respectively, are defined. Then the arrays are filled. S(keyword number) is the ordinal number of the start of the reply strings for a given keyword, R(keyword number) is the actual reply to be used next, and N(keyword number) is the last reply for that keyword. Finally an introduction is printed.

Lines 170-255: User input section. This part of the program gets a string from the user, places a space at the start of the string and two at the end (to make it easier to correctly locate keywords and to preventsubscribing out of bounds), throws out all the apostrophes (so DON'T and DONT' are equivalent), and stops if the word SHUT is found in the input string (which it takes to mean SHUT UP). ELIZA also checks for repetitive input by the user.

Lines 260-370: Keyword-finding section. ELIZA scans the input string for keywords and saves the keyword of highest priority temporarily in S, T, and F#. If no keyword is found, the keyword defaults to number 36, NOKEYFOUND (which causes ELIZA to say something noncommittal) and it skips the next section.

Lines 380-555: Translation or Conjugation section. The part of the input string following the keyword is saved. Then pairs of translation strings, as described above, are read and upon the occurrence of one of these strings, the other is substituted for it. When this is done ELIZA makes sure there is only one leading space in the translated string.

Lines 560-640: Reply printing section. Using R(keyword number), S(keyword number), and N(keyword number), the correct reply is located. The pointer for the next reply is bumped and reset if it is
too large. If the reply string ends in a "*", it is printed with the translated string, otherwise it is printed alone. The previously entered input string is saved to permit checking for repetitive input, and then ELIZA goes back for more input.

Limitations: Runs in 16K of memory.

Modifications: You can easily add, change, or delete any of the keywords, translation words, or replies. Remember, you will also have to change N1, N2, N3, and/or the numerical data. Just as a suggestion, if you decide to insert "ME" and "YOU" in the translation string list, put a nonprinting (control) character in YOU to prevent ELIZA from substituting I+YOU+ME. This means that YOU will always be assumed to be the subject of a verb, never the object, but resolving that difficulty is a whole different problem.

A Few Comments: The structures found in lines 120, 420, and 590 could be replaced by RESTORE NNNN statements if your BASIC has them. The use of an INSTR, SEARCH, or POS function to determine if one string is a substring of another would probably speed things up considerably (it takes ELIZA around 10 seconds to think of a reply).

What it all means: we'll leave to you. Although this program is an inferior imitation of the original, it does work. It is pretty farfetched to believe that a psychanalyst is nothing but a sentence-input-keyword-finder-conjugator-reply finder, but if you really think so, you can buy your computer a speech-recognition unit, a Computaker and a green couch, and charge $75/hr! My computer, the doctor!

MITS STRING BASIC FUNCTIONS

LEFT$(X$,X) takes the X leftmost characters of X$.

RIGHT$(X$,X) takes the X rightmost characters of X$.

MID$(X$,X,Y) takes Y characters from X$ starting with the Xth character.

DIM X$(72) dimensions X$ to hold 72 characters. That may seem obvious, but there's a story that goes along with this. The listing of ELIZA was made on a friend's SWTPC 6800 running 8K BASIC. After making a small patch in BASIC, loading a paper tape, and changing all the multiple statements to separate lines, we were all ready to try out ELIZA when Bob (whose computer it was asked about the enormous strings ELIZA used. It turns out that in SWTPC BASIC, DIM X$(72) means dimension string vector X$ to have 72 little strings(X$(K)) of 18 character
each. There's no easy way to handle more than 18 characters at a time! Those of you using SWTPC 6800 BASIC should have a lot of fun with this.

<table>
<thead>
<tr>
<th>Name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(S)(X),N(X)</td>
<td>See Text</td>
</tr>
<tr>
<td>I$</td>
<td>Input string</td>
</tr>
<tr>
<td>K$</td>
<td>Keyword string</td>
</tr>
<tr>
<td>C$</td>
<td>Translated or conjugated string</td>
</tr>
<tr>
<td>F$</td>
<td>Reply string, also used to save K$ in scanning for keyword</td>
</tr>
<tr>
<td>R$,S$</td>
<td>Strings used in conjugation process</td>
</tr>
<tr>
<td>P6</td>
<td>Previous input string</td>
</tr>
<tr>
<td>Z$</td>
<td>Scratch (used for simulating RESTORE NNNN statement).</td>
</tr>
<tr>
<td>N1</td>
<td>Number of keywords</td>
</tr>
<tr>
<td>N2</td>
<td>Number of conjugation strings</td>
</tr>
<tr>
<td>N3</td>
<td>Number of replies</td>
</tr>
<tr>
<td>K</td>
<td>Keyword number</td>
</tr>
<tr>
<td>S,T</td>
<td>Used to save K and L when scanning for keyword</td>
</tr>
<tr>
<td>X,L</td>
<td>Scratch. X is generally used for looping while L is used for scanning through strings</td>
</tr>
<tr>
<td>V</td>
<td>V Used for scanning for keyword string</td>
</tr>
</tbody>
</table>

DATA PROCESSING DEFINITIONS

ASSUMED DECIMAL POINT. Located two positions to the right of a programmer's current salary in estimating his own worth.

BIT. The increment by which programmers slowly go mad.

CHAINING. A method of attaching programmers to desks to speed up output.

CHECKPOINT. The location from which a programmer draws his salary.

COMMON LANGUAGE. The first thing a programmer must forget in order to be successful.

CORE STORAGE. A receptacle for the center section of apples.

COUNTER. A device over which martinis are served.

ERROR. What someone else has made when he disagrees with your computer output.

EXTERNAL STORAGE. Wastebasket.

FIXED WORD LENGTH. Four-letter words used by programmers in a state of confusion.

FLOATING CONTROL. A characteristic exhibited when you have to go to the restroom but can't leave the computer.

FLOATING POINT. The absolute limit before floating control is lost.

FLOW CHART. A graphic representation of the fastest route to the restroom.

INPUT. Food, whiskey, beer, aspirin, etc.

MACRO. The last half of an expression of surprise: "Holy Macro!"

MEMORY DUMP. Amnesia.

PROGRAMMER. Red-eyed, mumbling mammal capable of conversing with inanimate objects.

—Modern Data

The COMPUTALKER Model CT-1 optimizes the trade-off between low data rate speech and directly digitized speech. Low data rate speech relies on canned definitions for the sound of each phoneme, which produces mechanical sounding speech. Digitized speech, while remaining faithful to the original sound, requires 10k to 20k bytes per second of storage and is inflexible to phonetic manipulation.

With the Model CT-1, the sounds are defined in real time under software control. Parameters which represent the phonetic structure of human speech are transmitted to the CT-1 at a rate of 500 to 900 bytes per second. This allows the production of highly intelligible and quite natural sounding speech output. Speaker characteristics and language or dialect variations are retained in the output.

The CT-1 can also be operated in a low data rate mode using phoneme definitions contained in the CSR1 Synthesis-by-Rule software package. The COMPUTALKER speech synthesis system, used in this way, has the advantage that the software driver can easily be modified to keep the naturalness and intelligibility of the speech output up to date with the constantly evolving state of the art of rule governed speech.